Download the App!

show episodes
 
Loading …
show series
 
All good things must come to an end, including this podcast. This is the last episode we plan to release, and it doesn’t cover data science—it’s mostly reminiscing, thanking our wonderful audience (that’s you!), and marveling at how this thing that started out as a side project grew into a huge part of our lives for over 5 years.It’s been a ride, a…
 
The data science and artificial intelligence community has made amazing strides in the past few years to algorithmically automate portions of the healthcare process. This episode looks at two computer vision algorithms, one that diagnoses diabetic retinopathy and another that classifies liver cancer, and asks the question—are patients now getting b…
 
A few weeks ago, we put out a call for data scientists interested in issues of race and racism, or people studying how those topics can be studied with data science methods, should get in touch to come talk to our audience about their work. This week we’re excited to bring on Todd Hendricks, Bay Area data scientist and a volunteer who reached out t…
 
This is a re-release of an episode that originally ran in October 2019.If you’re trying to manage a project that serves up analytics data for a few very distinct uses, you’d be wise to consider having custom solutions for each use case that are optimized for the needs and constraints of that use cases. You also wouldn’t be YouTube, which found them…
 
Open source software is ubiquitous throughout data science, and enables the work of nearly every data scientist in some way or another. Open source projects, however, are disproportionately maintained by a small number of individuals, some of whom are institutionally supported, but many of whom do this maintenance on a purely volunteer basis. The h…
 
This episode features Zach Drake, a working data scientist and PhD candidate in the Criminology, Law and Society program at George Mason University. Zach specializes in bringing data science methods to studies of criminal behavior, and got in touch after our last episode (about racially complicated recidivism algorithms). Our conversation covers a …
 
As protests sweep across the United States in the wake of the killing of George Floyd by a Minneapolis police officer, we take a moment to dig into one of the ways that data science perpetuates and amplifies racism in the American criminal justice system. COMPAS is an algorithm that claims to give a prediction about the likelihood of an offender to…
 
This is a re-release of an episode that originally aired on April 1, 2018If you've done image recognition or computer vision tasks with a neural network, you've probably used a convolutional neural net. This episode is all about the architecture and implementation details of convolutional networks, and the tricks that make them so good at image tas…
 
The power of finely-grained, individual-level data comes with a drawback: it compromises the privacy of potentially anyone and everyone in the dataset. Even for de-identified datasets, there can be ways to re-identify the records or otherwise figure out sensitive personal information. That problem has motivated the study of differential privacy, a …
 
The abundance of data in healthcare, and the value we could capture from structuring and analyzing that data, is a huge opportunity. It also presents huge challenges. One of the biggest challenges is how, exactly, to do that structuring and analysis—data scientists working with this data have hundreds or thousands of small, and sometimes large, dec…
 
AI is evolving incredibly quickly, and thinking now about where it might go next (and how we as a species and a society should be prepared) is critical. Professor Stuart Russell, an AI expert at UC Berkeley, has a formulation for modifications to AI that we should study and try implementing now to keep it much safer in the long run. Prof. Russell’s…
 
Most data scientists bounce back and forth regularly between doing analysis in databases using SQL and building and deploying machine learning pipelines in R or python. But if we think ahead a few years, a few visionary researchers are starting to see a world in which the ML pipelines can actually be deployed inside the database. Why? One strong ad…
 
Covid-19 is turning the world upside down right now. One thing that’s extremely important to understand, in order to fight it as effectively as possible, is how the virus spreads and especially how much of the spread of the disease comes from carriers who are experiencing no or mild symptoms but are contagious anyway. This episode digs into the epi…
 
This week’s episode is a re-release of a recent episode, which we don’t usually do but it seems important for understanding what we can all do to slow the spread of covid-19. In brief, public health measures for infectious diseases get most of their effectiveness from their widespread adoption: most of the protection you get from a vaccine, for exa…
 
When you need to untangle cause and effect, but you can’t run an experiment, it’s time to get creative. This episode covers difference in differences and synthetic controls, two observational causal inference techniques that researchers have used to understand causality in complex real-world situations.…
 
This is a re-release of an episode that originally ran on October 21, 2018.The Poisson distribution is a probability distribution function used to for events that happen in time or space. It’s super handy because it’s pretty simple to use and is applicable for tons of things—there are a lot of interesting processes that boil down to “events that ha…
 
Recent research into neural networks reveals that sometimes, not all parts of the neural net are equally responsible for the performance of the network overall. Instead, it seems like (in some neural nets, at least) there are smaller subnetworks present where most of the predictive power resides. The fascinating thing is that, for some of these sub…
 
Data privacy is a huge issue right now, after years of consumers and users gaining awareness of just how much of their personal data is out there and how companies are using it. Policies like GDPR are imposing more stringent rules on who can use what data for what purposes, with an end goal of giving consumers more control and privacy around their …
 
Loading …

Quick Reference Guide

Copyright 2020 | Sitemap | Privacy Policy | Terms of Service
Google login Twitter login Classic login